A further result on an implicit function theorem for locally Lipschitz functions
نویسنده
چکیده
Let H : <m×<n → <n be a locally Lipschitz function in a neighborhood of (ȳ, x̄) and H(ȳ, x̄) = 0 for ȳ ∈ <m and x̄ ∈ <n. The implicit function theorem in the sense of Clarke [1, 2] says that if πx∂H(ȳ, x̄) is of maximal rank, then there exist a neighborhood Y of ȳ and a Lipschitz function G(·) : Y → <n such that G(ȳ) = x̄ and for every y in Y , H(y,G(y)) = 0. In this paper, we shall further show that if H has a superlinear (quadratic) approximate property at (ȳ, x̄), then G has a superlinear (quadratic) approximate property at ȳ. This result is useful in designing Newton’s methods for nonsmooth equations.
منابع مشابه
An effective optimization algorithm for locally nonconvex Lipschitz functions based on mollifier subgradients
متن کامل
Titchmarsh theorem for Jacobi Dini-Lipshitz functions
Our aim in this paper is to prove an analog of Younis's Theorem on the image under the Jacobi transform of a class functions satisfying a generalized Dini-Lipschitz condition in the space $mathrm{L}_{(alpha,beta)}^{p}(mathbb{R}^{+})$, $(1< pleq 2)$. It is a version of Titchmarsh's theorem on the description of the image under the Fourier transform of a class of functions satisfying the Dini-Lip...
متن کاملGeneralization of Titchmarsh's Theorem for the Dunkl Transform
Using a generalized spherical mean operator, we obtain a generalization of Titchmarsh's theorem for the Dunkl transform for functions satisfying the ('; p)-Dunkl Lipschitz condition in the space Lp(Rd;wl(x)dx), 1 < p 6 2, where wl is a weight function invariant under the action of an associated re ection group.
متن کاملEgoroff Theorem for Operator-Valued Measures in Locally Convex Cones
In this paper, we define the almost uniform convergence and the almost everywhere convergence for cone-valued functions with respect to an operator valued measure. We prove the Egoroff theorem for Pvalued functions and operator valued measure θ : R → L(P, Q), where R is a σ-ring of subsets of X≠ ∅, (P, V) is a quasi-full locally convex cone and (Q, W) is a locally ...
متن کامل(DELTA,GAMMA, 2)-BESSEL LIPSCHITZ FUNCTIONS IN THE SPACE L_{2,ALPHA}(R+)
Using a generalized translation operator, we obtain a generalization of Theorem 5 in [4] for the Bessel transform for functions satisfying the (delta;gamma ; 2)-BesselLipschitz condition in L_{2;alpha}(R+).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Oper. Res. Lett.
دوره 28 شماره
صفحات -
تاریخ انتشار 2001